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Today’s Menu

1 Embeddings Data

Small Model Small data

2 Graph Data
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Data Efficiency

Small Model Big Data

First Challenge

Reduce data size to speed data mining and model training up.
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k-Means Clustering

Problem definition

Input: Let A be a set of points
in Rd and k > 0.

Output: k points (called cen-
ters) S minimizing

cost(A, S) :=
∑
p∈A

min
c∈S

∥p−c∥2.

First Challenge

Reduce data size to speed data mining and model training up.
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Coreset Definition

Coreset

Given a set of points A, a weighted subset Ω ⊂ A is a (k , ε)-coreset
if for all sets S of k centers it holds

|costw (Ω, S)− cost(A,S)| ≤ ε · cost(A, S)
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Theoretical Results on Coresets for Euclidean k-Means

Coreset Size

Upper Bounds

Har-Peled, Mazumdar (STOC’04) O( k
ϵ−d+2 log n)

Chen (Sicomp’09) O(d k
ε

2
log n)

Langberg, Schulman (SODA’10) O(d2k3ϵ−2)

Feldman, Langberg (STOC’11) O(dkϵ−4)

Feldman, Schmidt, Sohler (Sicomp’20) O(k3ϵ−4)

Becchetti, Bury, C.-A., Grandoni, Schwiegelshohn (STOC’19) O(kϵ−8)

Huang, Vishnoi (STOC’20) O(kϵ−6)

Braverman, Jiang, Krauthgamer, Wu (SODA’21) O(k2ϵ−4)

C.-A., Saulpic, Schwiegelshohn (STOC’21) O(kϵ−4)

C.-A., Larsen, Saulpic, Schwiegelshohn (STOC’22) O(k2ϵ−2)

C.-A., Larsen, Saulpic, Schwiegelshohn, Sheikh-Omar (NeurIPS’22) O(k1.5ϵ−2)

Huang, Jian, and Wu (2023) showed that O(kϵ−2min(ε−2,
√
k)) is

optimal.
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Uniform Sampling

We sample S points uniformly at random and hope for the best.

We will never sample from the lower right set of points unless we pick the
entire point set.
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Sensitivity Sampling

The lower right points were, individually, more important than the upper
left ones.

Can we formalize and use the importance of points in the sampling
distribution?

Sensitivity

The sensitivity of a point p is defined as

sens(p) := sup
set of k points C

cost(p,C )

cost(A,C )
.

The higher the sensitivity, the more important p is for some clustering.
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Sensitivity Sampling (2)

Idealized Algorithm

1 Sample each point p proportionate to sens(p).

2 Weight each sampled point inversely proportionate to the
sampling probability.

Bansal, C.-A., Prabhu, Saulpic, Schwiegelshohn ’24

Theorem

Sensitivity sampling yields a coreset of nearly-optimal size.
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Data Efficiency

Large Model Big Data

New Challenge

Reduce data size efficiently.
Sublinear query time algorithm: How to identify the relevant ele-
ments in the data with few model queries?
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High Level Goal

Find a subset S in the data s.t. average gradient (or loss) of the
model on S ∼ average gradient (or loss) of the model on whole data.

Sener & Savarese (2018)

Input: A dataset D
Oracle access to the loss of the model ℓ : D 7→ R+,
Target sample size k

Output: A sample S ⊆ D of size at most k and a weight function
w : S 7→ R+ s.t.:

1 The number of queries to ℓ (i.e.: inferences) is at most k .

2 S minimizes ∆(S) := |
∑

e∈D ℓ(e)−
∑

s∈S w(s)ℓ(s)|.
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Our Modelisation

Assumptions

1 Input provides an embedding of the data in Rd .

2 Loss of the model is (z , λ)-Holder continuous w.r.t. the
embedding: For two elements e, e ′,
|ℓ(e)− ℓ(e ′)| ≤ λ||embedding(e)− embedding(e ′)||z .

Why?

1 In many cases the model is pretrained (fine-tuning, distillation,
etc.).

2 Or we want to improve a pre-existing model (for which the last
layers may provide a good embedding).

3 There are many generic embeddings that capture the high-level
input structure of the input (e.g.: BERT, etc.).
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Our Algorithm

Given a solution S for k-means:
sens(p) := λd(p, S(p))2 + ℓ(S(p)), where S(p) is closest center to p

14



Our Theorem

Axiotis, C.-A., Henzinger, Jerome, Mirrokni, Saulpic, Woodruff, Wunder
ICML’24

Theorem

The sample S output by our algorithm satisfies ∆(S) :=
|
∑

e∈D ℓ(e)−
∑

s∈S w(s)ℓ(s)| ≤ 1√
k
(
∑

e∈D ℓ(e) + λk-means cost)

Remark

As k grows, the additive k-means cost term becomes negligible (0
when k = n).
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Graph Clustering: A Classic Data Analysis Task

Graph Clustering: Identify dense subgraphs

Input: A social network, set of genes of species, the world wide web.

Goal: Find communities in social networks, groups of related organisms,
designing heuristics or compression schemes...

20



A slightly more concrete objective for this talk:

Identify very dense subgraphs with small expansion
(in sparse graphs).
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Identify very dense subgraphs with small expansion
(in sparse graphs).

Step 1: Phrase the problem as an optimization problem.
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Modularity: An Objective Function from Statistical Physics

Input: A graph G = (V ,E ), an edge between two vertices u, v if
they are similar
Goal: A partition {V1, . . . ,Vk} of V that maximizes

k∑
i=1

∑
u,v∈Vi

1(u,v)∈E − degree(u) · degree(v)
2|E |

Intuition:

For a given cluster, the function compares the number of edges within
the cluster to the number of edges in a random network with pre-
scribed degree distribution.

23



Some More Intuition

All vertices in the same cluster =⇒ Modularity = 0

G consists of 2 disjoint cliques C1,C2 of size n/2 =⇒ Max
Modularity Clustering is {C1,C2}.

Interesting Feature

The number of clusters is not imposed.

24



Question 1

Can we design an algorithm to identify dense subgraphs?

Step 1: Phrase the problem as an optimization problem.

Step 2: An algorithm for optimizing this objective function.
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The Louvain Algorithm (almost)

A natural approach for maximizing modularity

Input: A graph G = (V ,E ), an edge between two vertices u, v if
they are similar.

Step 1: Start with a partition P where each vertex is in its own
cluster.

Step 2: Given a partition P = {V1, . . . ,Vk}, consider the set of
vertices U that are such that moving a vertex from its current part
to another one increases the modularity.
If |U| > 0, pick a random vertex in U and move it to a part so as to
increase the modularity and repeat Step 2. Otherwise stop.

Step 3: Outputs the partition.

How Good is the Louvain Algorithm?
26



Awful in theory: No approximation
guarantee in the worst-case even for
small families of graphs...

Awesome in practice: Method of
choice for clustering graphs, more
than 8600 citations over the last 10
years...
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Our Result: Analysis of Louvain Beyond the Worst-Case

A classic (but naive) model for graphs with cluster structure:

The Stochastic Block Model

The set of vertices consists of two (unknown) equal-size parts A1,A2;
An edge between vertices u ∈ Ai and v ∈ Aj is generated indep. at
random:

With probability p if i = j .

With probability q if i ̸= j .

and p > q.
Goal: Find A1,A2.

How does Louvain perform on these graphs?
28



Our Result

C.-A., Kosowski, Mallmann-Trenn, Saulpic Neurips’20

Theorem

If p−q√
p > n−1/6−ε then Louvain outputs A1,A2 with high probability.

Moreover, Louvain converges in near-linear time.
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Aftermath:

Parallel Setup

Corollary: If all the vertices change partition in parallel, then conver-
gence is done in O(1) rounds.
=⇒ Massively-Parallel-Computation (MPC) algorithm for SBM.

Consider a social network where everyone follows the opinion of the
majority of their friends. Initial opinion is random ∈ {0, 1}.

If there are two communities, then it quickly converges to polarized
opinions.

Us Politics Blogosphere
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Future Work and Open Problems

Find better heuristics: Robust to inputs containing many
clusters of diverse sizes?

Better model for real world graphs: beyond the stochastic block
model. Semi-random? MPC for semi-random graph models?

MPC Algorithms for exact recovery in the stochastic block
model up to O(information theoretic threshold)? Spectral
methods?

Understand local dynamics in networks to favor diversity of
opinions, less polarized situations.
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